

Complete Blockage of HBV Virus Replication and Inhibition of cccDNA Formation by Core Protein Allosteric Modifiers

> G. Renuka Kumar, Yuhua Zong, Alex Mercier, Pao-Chen Li, Cathal Mahon, Emily Connelly, Katherine Nabel, Lichun Li, Yi Zhou, Lida Guo, Shawn Sun, Geoffrey Chen, Uri Lopatin, Richard Colonno and <u>Qi Huang</u>

> > **Assembly Biosciences**

assembly

HBV Core Protein: Required Throughout Lifecycle

- Plays a critical role in the formation, amplification and maintenance of cccDNA
- Essential for creating new rcDNA from pgRNA

ASMB Goal: Curative Therapy for HBV

Current therapies are suboptimal

- IFNs are poorly tolerated, and often not effective
- Nucs are highly effective in suppressing viral load to undetectable levels, but are not curative, and have little effect on cccDNA levels (key target to eliminate chronic infection)
- To achieve clinical cure, new therapies must target cccDNA

 Identified and developed a series of potent Core Protein Allosteric Modifiers (CpAMs) which inhibit cccDNA

CpAMs Inhibit HBV Replication in HepAD38 cells

HBV Viral Load Inhibition in HepAD38 cells

CpAMs Inhibit HBV DNA Replication by Blocking pgRNA Encapsidation

ABI-H0731 & GLS4 inhibited both viral RNA and DNA in HBV capsids

• ETV reduced quantity of HBV DNA, but increased (~50%) the amount of pgRNA packaged in intracellular capsids and secreted virions

CpAMs Inhibit cccDNA Formation in NTCP-HepG2 Cells

ells (4

Viral DNA, pgRNA, HBeAg and HBsAg levels in infected NTCP-HepG2 cells

• CpAMs reduced HBeAg, HBsAg and pgRNA levels (surrogates for establishment of cccDNA), while ETV was only effective at inhibiting viral load (HBV DNA)

CpAMs Inhibit cccDNA Formation in PHH Cells

Viral DNA, pgRNA, HBeAg and HBsAg in Primary Human Hepatocytes

	EC ₅₀ ± SD (nM)			
Compound	Viral load	HBeAg	HBsAg	pgRNA
ABI-H0808	80	196	310	305
GLS4	1,940	1,480	1,860	1,930
ETV	<0.1	Incomplete	Incomplete	Incomplete

- CpAMs reduced HBeAg, HBsAg and pgRNA levels (surrogates for establishment of cccDNA), while ETV was only effective at inhibiting viral load (HBV DNA)
- GLS4 lost potency in PHH, likely due to metabolic instability

CpAMs Inhibit cccDNA Amplification in HepAD38 cells

Detection of HBV cccDNA

Model Illustration of Expected Pattern

Inhibitory effect of CpAMs on cccDNA

Southern Blot on total extrachromosomal DNA from induced HepAD38 cells treated with compounds at 10x their EC_{50} for 11 days

Summary

- Important to identify treatments/strategies that result in significantly higher cure rates
- HBV cccDNA appears to be obvious target, as this moiety is believed to be responsible for sustaining a chronic infection and is not impacted by "standard of care" therapy
- HBV Core protein plays multiple roles throughout the HBV lifecycle and represents an excellent target by which to impact cccDNA levels
- CpAMs represent a new class of direct acting antivirals that are selective for HBV and inhibit *de novo* cccDNA formation
- Assembly Biosciences has established assays to specifically measure cccDNA levels and is currently progressing the first candidate into clinical development this year

Acknowledgements

Assembly Biosciences HBV Team

Qi Huang G. Renuka Kumar Yuhua Zong Alex Mercier Pao-Chen Li Cathal Mahon Emily Connelly Katherine Nabel Yi Zhou Lida Guo Geoffrey Chen Uri Lopatin Richard Colonno

Biology

Chemistry Lee Arnold Leping Li Simon Haydar Bill Turner Lynn Bannen Mark Bures

Biochemistry Earl May Lichun Li Samson Francis Sara Katen Steve Dunelbarger **Jason Deer** Ш **INDIANA UNIVERSITY BLOOMINGTON** Adam Zlotnick

assembly