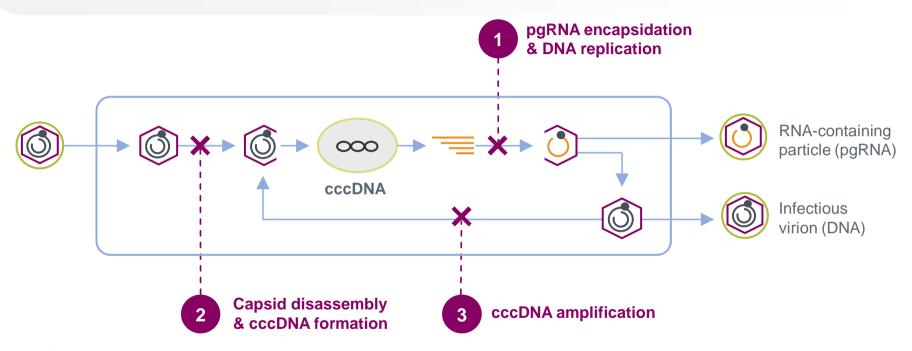
Antiviral activity and safety of the hepatitis B core inhibitor ABI-H0731 administered with a nucleos(t)ide reverse transcriptase inhibitor in patients with HBeAg negative chronic hepatitis B infection

Scott Fung¹, Mark S. Sulkowski², Jacob Lalezari³, Eugene R. Schiff⁴, Douglas Dieterich⁵, Tarek Hassanein⁶, Paul Kwo⁷, Magdy Elkhashab⁸, Ronald Nahass⁹, Walid Ayoub¹⁰, Steven-Huy Han¹¹, Maurizio Bonacini³, Katia Alves¹², Hany Zayed¹², Qi Huang¹², Richard Colonno¹², Steven J Knox¹², Luisa M. Stamm¹², Alnoor Ramji¹³, Michael Bennett¹⁴, Edward Gane¹⁵, Natarajan Ravendhran¹⁶, James Park¹⁷, Ira Jacobson¹⁷, Ho Bae¹⁸, Sing Chan¹⁹, Hie-Won Hann²⁰, Xiaoli Ma²¹, Tuan T. Nguyen²², Man-Fung Yuen²³

¹University of Toronto, Toronto, Canada; ²Johns Hopkins University School of Medicine, Baltimore, MD, US; ³Quest Clinical Research, San Francisco, CA, US; ⁴Schiff Center for Liver Diseases, University of Miami School of Medicine, Miami, FL, US; ⁵Department of Medicine, Division of Liver Diseases, Icahn School of Medicine, Mount Sinai Hospital, New York, NY, US; ⁶Southern California Research Center, Coronado, CA, US; ⁻Stanford University Medical Center, Stanford, CA, US; ⁶Toronto Liver Centre, Toronto, ON, Canada; ⁶Infectious Disease Care, Hillsborough, FL, US; ¹¹Cedars-Sinai Medical Center, Los Angeles, CA, US; ¹¹Pfleger Liver Institute, University of California, Los Angeles, CA, US; ¹²Assembly Biosciences, Inc., South San Francisco, CA, US; ¹³Providence Health Care Research Institute, Vancouver, BC, Canada; ¹⁴Medical Associates Research Group, San Diego, CA, US; ¹⁵Auckland Clinical Studies Ltd, Auckland, New Zealand; ¹⁶Digestive Disease Associates, Catonsville, MD, US; ¹¬New York University Langone Medical Center, New York, NY, US; ¹¬Saian Pacific Liver Center, Los Angeles, CA, US; ¹¬Sing Chan MD, New York, NY, US; ²¬Thomas Jefferson University Hospital, Philadelphia, PA, US; ²¹Office of Xiaoli Ma, Philadelphia, PA, US; ²²¬T Nguyen Research and Education, Inc., San Diego, CA, US; ²¬Department of Medicine, The University of Hong Kong, Hong Kong

Disclosures: Scott Fung

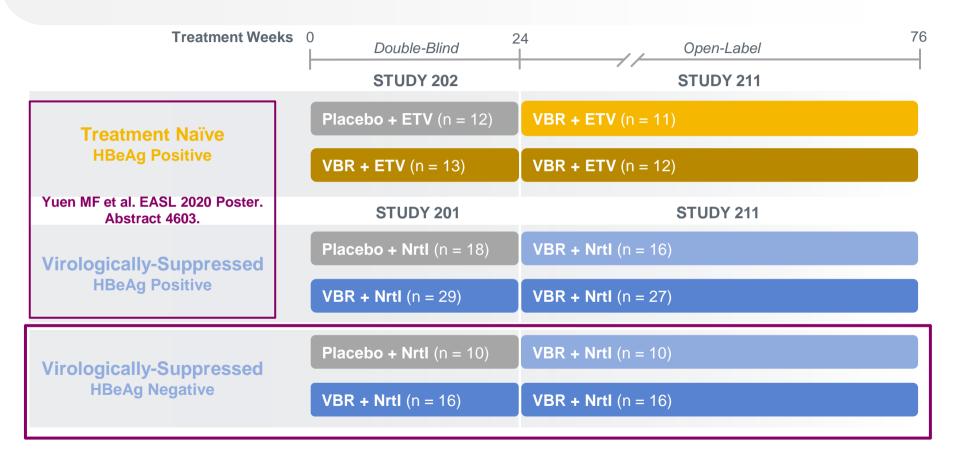

- Assembly Biosciences
 - Consulting
- Gilead Sciences
 - Consulting, Teaching & Speaking, Research Support
- Springbank Pharma
 - Consulting

Background

- Worldwide, an estimated 250 million people are chronically infected with HBV and 600,000–1 million die each
 vear due to cirrhosis and HCC associated with CHB infection^{1–4}
 - Based on global prevalence modelling, of the estimated 94 million patients considered to be eligible for treatment, only approximately 4.8 million (5%) actually receive antiviral therapy⁵
- New therapies are needed to provide deeper suppression of HBV replication that may ultimately achieve offtherapy sustained virologic response and allow for finite therapy
- Incorporation of pgRNA quantification in clinical studies will enable a more comprehensive assessment of the level of cccDNA transcriptional activity and HBV replication and should lead to improved treatment options for patients with CHB^{6–8}
 - The presence of HBV pgRNA is associated with persistent viral replication and the risk of relapse following cessation of treatment with NrtI^{8–12}

cccDNA, covalently closed circular DNA; CHB, chronic hepatitis B; HBV, hepatitis B virus; HCC, hepatocellular carcinoma; Nrtl, Nucleos(t)ide analogue reverse transcriptase inhibitor; pgRNA, pregenomic RNA.

Core Inhibitor Mechanisms of Action



- Core inhibitors target multiple steps of the HBV life cycle to suppress HBV DNA, pgRNA, and cccDNA
- Combination treatment with a core inhibitor and a Nrtl, which have distinct mechanisms of action, has the potential to lead to deeper virologic suppression and to improve treatment outcomes of CHB

Vebicorvir (VBR, ABI-H0731): A Novel Inhibitor of HBV Core Protein

- Disrupts HBV capsid formation by allosteric binding and interference with core protein
- Broad in vitro antiviral activity¹
 - Inhibits virion and pgRNA particle production (EC₅₀= 0.17– 0.31 μ M; CC₅₀ = >20 μ M)
 - Inhibits de novo formation of cccDNA and downstream HBeAg and HBsAg production (EC₅₀= 2–7 μM)
 - Pangenotypic and fully active against Nrtl-resistant HBV
- Orally administered as 300 mg once daily without regard to food
- No drug interaction with Nrtls
- Favorable clinical safety profile
- Superior reduction in HBV DNA and pgRNA in combination with Nrtls compared to Nrtl alone in HBeAg positive CHB patients²

Phase 2 Clinical Trial Overview

ETV, entecavir.

Objectives and Key Entry Criteria

The objectives of Study 201 and 211 were to:

- Evaluate the safety of VBR in patients with HBeAg negative CHB
- Determine the efficacy of VBR in patients with HBeAg negative CHB

Patients from 21 sites in the United States, Canada, Hong Kong, and New Zealand were enrolled if they met the following key entry criteria:

Patients 18 to 70 years old with CHB in good general health

Metavir F0-F2 or equivalent (no history of hepatic decompensation)

Study 201: On Nrtl with HBV DNA ≤LLOQ by COBAS for at least 6 months, HBsAg >100 IU/mL; ALT ≤5x ULN

Study 211: Completion of Study 201 with compliance to study drug

Methods

- Safety was assessed by AEs and laboratory parameters
- Efficacy was assessed through monitoring of HBV nucleic acids and HBV antigens

Assay	Limits
Assembly HBV DNA Assay (Study 201/211) ^a	LOD = 5 IU/mL
Assembly HBV pgRNA Assay (Study 201/211) ^a	LLOQ = 35 U/mL
Assembly HBV Total Nucleic Acids (Composite DNA + pgRNA; Study 211) ^a	LLOQ = 20 IU/mL
Hepatitis B e-antigen, Quantitative Abbott ARCHITECT i2000SR	LLOQ = 0.11 IU/mL
Hepatitis B surface antigen, Quantitative Abbott ARCHITECT i2000SR	LLOQ = 0.05 IU/mL
Hepatitis B core-related antigen, Lumipulse G	LLOQ = 1 kU/mL

^aDetailed information regarding Assembly assays is included in Huang Q et al. EASL 2020 Poster Presentation, Abstract 4154.

- Resistance monitored by population sequencing of the HBV core protein and polymerase RT regions (mutant detection limit ≥5%)
- Genotyping was performed with highly sensitive PCR (DNA) and RT-PCR (DNA + pgRNA) assays to detect a single copy of HBV genome

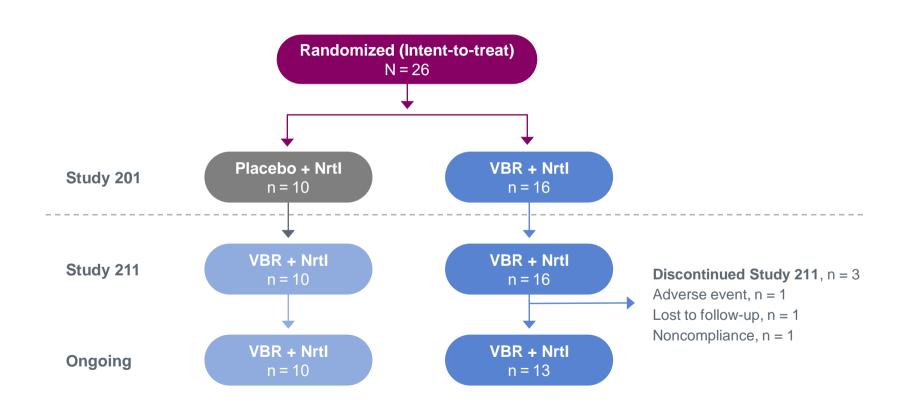
Study 201/211: Virologically-Suppressed, HBeAg Negative Patients Baseline Demographics and Disease Characteristics

HBeAg Negative	Placebo + Nrtl N = 10	VBR + Nrtl N = 16
Age, years, mean (SD)	46.9 (8.3)	49.3 (7.7)
Male, n (%)	5 (50)	11 (69)
Asian, n (%)	9 (90)	11 (69)
Genotype A, n (%)	2 (20)	4 (25)
B, n (%)	0	4 (25)
C, n (%)	1 (10)	1 (6)
D, n (%)	0	1 (6)
Not determinable ^a , n (%)	7 (70)	6 (38)
Duration of Nrtl at randomization, years, mean (SD)	6.6 (5.8)	2.8 (3.6)
Tenofovir disoproxil fumarate (TDF), n (%)	4 (40)	7 (44)
Tenofovir alafenamide fumarate (TAF), n (%)	4 (40)	6 (38)
Entecavir (ETV), n (%)	2 (20)	3 (19)

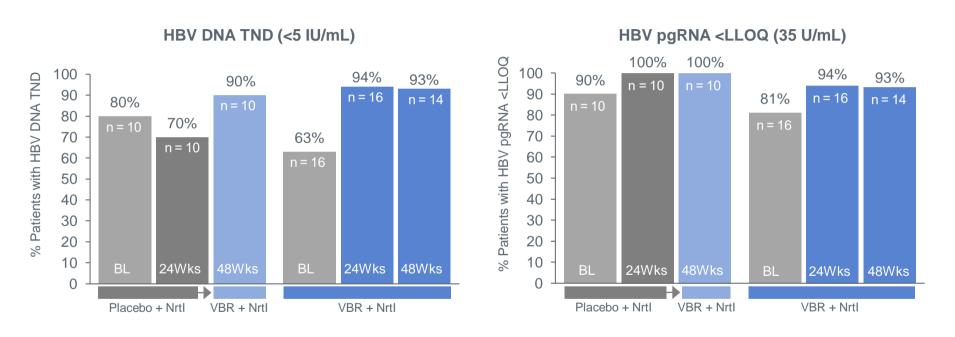
^aNot enough sequence data to confirm genotype.

SD, standard deviation.

Study 201/211: Virologically-Suppressed, HBeAg Negative Patients Baseline Demographics and Disease Characteristics

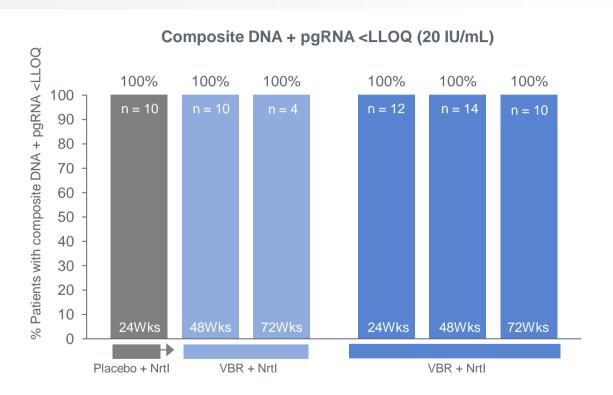

HBeAg Negative	Placebo + Nrtl N = 10	VBR + Nrtl N = 16
HBV DNA (COBAS) <lloqa, (%)<="" n="" td=""><td>10 (100)</td><td>16 (100)</td></lloqa,>	10 (100)	16 (100)
HBV DNA (Assembly), n (%)		
Target not detected ^b	8 (80)	10 (63)
HBV pgRNA, Log ₁₀ U/mL, mean (SD)	1.6 (0.1)	1.7 (0.3)
<lloq<sup>c, n (%)</lloq<sup>	9 (90)	13 (81)
HBeAb Positive, n (%)	9 (90)	14 (88)
HBsAg, Log ₁₀ IU/mL, mean (SD)	3.3 (0.7)	3.0 (0.6)
HBcrAg, Log ₁₀ kU/mL, mean (SD)	0.6 (0.6)	0.5 (0.7)
ALT, U/L, mean (SD)	21 (10)	27 (13)

 $^{^{}a}LLOQ = 20 IU/mL.$


 $^{^{}b}LOD = 5 IU/mL$.

cLLOQ = 35 U/mL.

Study 201/211: Virologically-Suppressed, HBeAg Negative Patients *Disposition*



Study 201/211: Virologically-Suppressed, HBeAg Negative Patients *Efficacy: HBV DNA and HBV pgRNA*

- 31% of patients (8/26) had detectable HBV DNA at baseline when assessed using the more sensitive assay
 - One patient experienced HBV DNA rebound (1 log₁₀ increase from nadir) in the setting of noncompliance with both study drugs

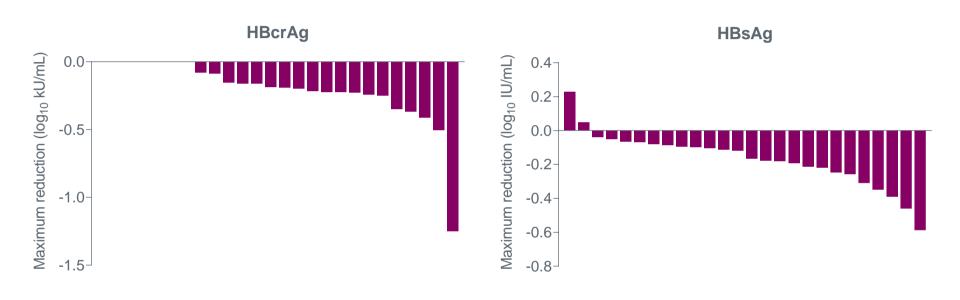
Study 201/211: Virologically-Suppressed, HBeAg Negative Patients *Efficacy: Composite DNA + pgRNA Assay*

The composite DNA + pgRNA assay is being utilized to determine which patients are eligible to stop treatment

Study 201/211: Virologically-Suppressed Patients Criteria For Stopping Therapy

Treatment Week

AND


HBeAg Negative or HBeAg ≤5 IU/mL

For at least 6 months prior to Treatment Week 76

88% (23/26)^a of patients who enrolled in Study 211 are projected to discontinue both VBR + Nrtl (12% [3 patients] have discontinued VBR for other reasons)

^aAs of July 9, 2020 data cut.

Study 201/211: Virologically-Suppressed, HBeAg Negative Patients *Efficacy: HBV Antigens*

Most patients experienced some decrease in HBcrAg and HBsAg on treatment with VBR + NrtI

Study 201/211: Virologically-Suppressed, HBeAg Negative Patients *Safety: Overall Summary*

	Study 201 (24 weeks)		Study 211 (24 to 72 weeks)	
Patients, n (%)	Placebo + Nrtl N = 10	VBR + NrtI N = 16	VBR + Nrtl ^a N = 10	VBR + Nrtl N = 16
Any TEAE	3 (30)	10 (63)	6 (60)	8 (50)
Grade 1	3 (30)	8 (50)	3 (30)	5 (31)
Grade 2	0	2 (13)	3 (30)	3 (19)
Grade ≥3	0	0	0	0
Serious AEs	0	0	0	0
AEs leading to DC	0	0	1 ^b	0
Deaths	0	0	0	0

^aPatients who received placebo + Nrtl in Study 201.

^bGrade 1 rash, which began in Study 201 led to study drug discontinuation in Study 211.

Study 201/211: Virologically-Suppressed, HBeAg Negative Patients Safety: Treatment-Emergent Adverse Events

	Study 201 (24 weeks)		Study 211 (24 to 72 weeks)	
Patients, n (%)	Placebo + Nrtl N = 10	VBR + Nrtl N=16	VBR + Nrtl ^a N = 10	VBR + Nrtl N = 16
Upper respiratory tract infection	0	2 (13)	3 (30)	0
Rash	0	0	0	4 (25) ^b
Nausea	0	2 (13)	0	1 (6)
Viral gastroenteritis	0	0	0	2 (13)
Nephrolithiasis	0	0	0	2 (13)

Reported for >1 patient in any column by preferred term.

^aPatients who received placebo + Nrtl in Study 201.

bAll rash events were Grade 1 (1 event led to study drug discontinuation; 2 events resolved on continued treatment; 1 event ongoing, intermittent and not requiring medication).

Study 201/211: Virologically-Suppressed, HBeAg Negative Patients *Safety: Laboratory Abnormalities*

	Study 201 (24 weeks)		Study 211 (24 to 72 weeks)	
Patients, n (%)	Placebo + Nrtl N = 10	VBR + Nrtl N = 16	VBR + Nrtl ^a N = 10	VBR + Nrtl N = 16
Grade 1	8 (80)	4 (25)	6 (60)	8 (50)
Grade 2	2 (20)	3 (19)	2 (20)	3 (19)
Grade 3 ^b	0	1 (6)	0	1 (6)

^aPatients who received placebo + Nrtl in Study 201.

AST, aspartate aminotransferase.

^bGrade 3 abnormalities were elevated AST (1 patient, isolated and in the setting of strenuous exercise) and decreased lymphocytes (1 patient).

Conclusions

- In virologically-suppressed patients with HBeAg negative CHB, VBR given in combination with Nrtl has a favorable safety and tolerability profile with no observed treatment-emergent resistance
- Despite chronic long-term Nrtl therapy, evidence of residual viral replication was detectable in one third of patients at baseline when measured using a more sensitive HBV DNA assay
- On treatment with VBR and NrtI, all patients had DNA + pgRNA levels <LLOQ measured by the most sensitive composite assay
- Discontinuation of both VBR and Nrtl treatment in the majority of these patients who have achieved the stopping criteria will now assess the durability of the virologic response

Acknowledgments

We express our gratitude to all the patients, investigators, and site staff who participated in the study

Canada

- Scott Fung (University of Toronto, Toronto)
- Magdy Elkhashab (Toronto Liver Centre, Toronto)
- Alnoor Ramji (Providence Health Care Research Institute, Vancouver)

- Hong Kong

Man-Fung Yuen (Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong)

New Zealand

Edward Gane (Auckland Clinical Studies Ltd, Auckland)

USA

- Mark S Sulkowski (Johns Hopkins Univ. School of Medicine, Baltimore, MD)
- Jacob Lalezari, Maurizio Bonacini (Quest Clinical Research, San Francisco, CA)
- Eugene R Schiff (Schiff Center for Liver Diseases, Univ. of Miami School of Medicine, Miami, FL)
- Douglas Dieterich (Icahn School of Medicine, Mount Sinai Hospital, New York, NY)
- Tarek Hassanein (Southern California Research Center, Coronado, CA)
- Paul Kwo (Stanford University Medical Center, Stanford, CA)
- Ronald Nahass (Infectious Disease Care, Hillsborough, FL)
- Walid Ayoub (Cedars-Sinai Medical Center, Los Angeles, CA)

- Steven-Huy Han (Pfleger Liver Institute, University of California, Los Angeles, CA)
- Michael Bennett (Medical Associates Research Group, San Diego, CA)
- Natarajan Ravendhran (Digestive Disease; Associates, Catonsville, MD)
- James Park, Ira Jacobson (New York University Langone Medical Center, New York, NY)
- Ho Bae (Asian Pacific Liver Center, Los Angeles, CA)
- Sing Chan (Sing Chan MD, New York, NY)
- Hie-Won Hann (Thomas Jefferson University Hospital, Philadelphia, PA)
- Xiaoli Ma (Office of Xiaoli Ma, Philadelphia, PA)
- Tuan T Nguyen (T Nguyen Research and Education, Inc., San Diego, CA)
- Writing and editorial support was provided by Lauren Hanlon, PhD, of AlphaBioCom, LLC and funded by Assembly Biosciences
- This study was sponsored by Assembly Biosciences

