

Interim Safety and Efficacy Results of the ABI-H0731 Phase 2a Program Exploring the Combination of ABI-H0731 with Nuc Therapy in Treatment-Naive and Treatment-Suppressed Chronic Hepatitis B Patients

Xiaoli MA¹, Jacob Lalezari², Tuan Nguyen³, Ho Bae⁴, Eugene R. Schiff⁵, Scott Fung⁶, Man-Fung Yuen⁷, Tarek Hassanein⁸, Hie-Won Hann⁹, Magdy Elkhashab¹⁰, Douglas Dieterich¹¹, Mark Sulkowski¹², Paul Kwo¹³, Ronald Nahass¹⁴, Kosh Agarwal¹⁵, Alnoor Ramji¹⁶, James Park¹⁷, Natarajan Ravendhran¹⁸, Sing Chan¹⁹, Frank Weilert²⁰, Steven-Huy Han²¹, Walid Ayoub²², Edward Gane²³, Ira Jacobson²⁴, Michael Bennett²⁵, Qi Huang²⁶, Ran Yan²⁶, Vivian Huey²⁶, Eric Ruby²⁶, Sandy Liaw²⁶, Richard Colonno²⁶ and Uri Lopatin²⁶

¹Office of Xiaoli Ma; ²Quest Clinical Research; ³Research and Education-Tuan Nguyen MD; ⁴Asia Pacific Liver Center; ⁵Schiff Center for Liver Diseases; ⁶Toronto General Hospital, Canada; ⁷Queen Mary Hospital, Hong Kong; ⁸Southern California Research Center; ⁹Thomas Jefferson University Hospital; ¹⁰Toronto Liver Center, Canada; ¹¹Icahn School of Medicine at Mount Sinai; ¹²Johns Hopkins University School of Medicine; ¹³Stanford University Medical Center; ¹⁴Infectious Disease Care; ¹⁵King's College Hospital NHS Foundation Trust, United Kingdom; ¹⁶GI Research Institute, Canada; ¹⁷New York University Langone Medical Center; ¹⁸Digestive Disease Associates; ¹⁹Sing Chan, MD; ²⁰Waikato Hospital, New Zealand; ²¹Pfleger Liver Institute at University of California Los Angeles; ²²Cedars-Sinai Medical Center; ²³Auckland Clinical Studies, New Zealand; ²⁴New York University Langone Medical Center; ²⁵Medical Associates Research Group; ²⁶Assembly Biosciences

Disclosures

- Consultant for Assembly Biosciences
- No additional conflicts of interest to declare

New Therapies Needed to Increase Cure Rates in CHB

Nucleos(t)ide polymerase inhibitors (Nuc)

- Are the standard of care (SOC)
- Inhibit conversion of pgRNA to dsDNA
- Exhibit potent reduction of viremia (DNA)
- Are safe and well tolerated
- Have a high barrier to resistance

BUT FAIL TO

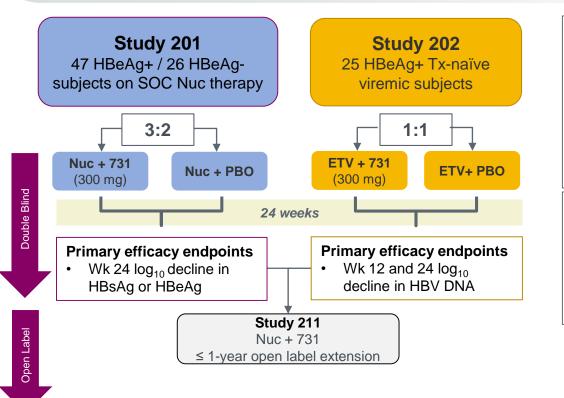
- Eliminate low-level viremia
- Inhibit formation of cccDNA
- · Achieve cure in vast majority of patients

Cure is not possible while residual virus persists

Core protein Inhibitors (CIs)

- Inhibit multiple steps in viral replication cycle
 - Packaging of pgRNA
 - DNA delivery to nucleus
 - Generation of cccDNA
- *In vitro,* can *a*chieve deeper levels of viral inhibition than Nucs alone

HBV Core Inhibitor ABI-H0731


- Discovered and developed at ASMB
- Novel proprietary chemical class DBAA (dibenzothiazepinecarboxamides)
- Well tolerated in Phase 1 studies
- Efficacious in a Phase 1b 28-day monotherapy study¹
 - HBeAg pos patients (300 mg QD) exhibited
 - Mean DNA reduction = 2.9 log₁₀ IU/mL
 - Mean RNA reduction = 2.0 log₁₀ copies/mL

Phase 2 program explores critical steps needed to achieve higher cure rates

- 1. Elimination of viremia
- 2. Prevention of new cccDNA generation
- 3. Demonstrate viral suppression sustained off therapy

¹Yuen et al, AASLD 2018

Interim Review of ABI-H0731 Phase 2a Studies

Key enrollment criteria

- Good general health
- Metavir F0-F2 or equivalent (no history of hepatic decompensation)
- Study 201: HBsAg > 400 IU/mL (HBeAg pos) or > 100 (HBeAg neg)
- Study 202: HBV DNA > 10⁵ IU/mL

Additional Endpoints

- Safety and tolerability
- Change in log₁₀ HBV RNA
- HBV DNA (PCR target not detected)
- Resistance monitoring

	D1	Wk 12	Wk 24
Study 201	73	65	11
Study 202	25	24	12

Demographics and Baseline Characteristics

	Study 201 (N = 73)		Study 202 (N = 25)
Demographics	HBeAg Pos (n = 47)	HBeAg Neg (n = 26)	HBeAg Positive
Age, mean (range) years	44 (19-66)	48 (34-64)	35 (19-66)
Female, n (%)	16 (34%)	10 (38%)	17 (68%)
Asian, n (%)	41 (87%)	21 (81%)	23 (96%)
Genotype B,C (%)	11,28 (83%)	4,8 (46%)	11,11 (88%)
Mean Baseline Values			
ALT (SD) U/L	27 (17)	25 (12)	57 (66)
HBV DNA (SD) log ₁₀ IU/mL	BLQ	BLQ	7.8 (0.8)
HBV RNA (range) log ₁₀ copy/mL	5.9 (2.4 -7.1) ^a	≤ 2.3 (2.4-3.2) ^b	8.0 (5.6-9.3)
HBsAg (range) IU/mL	5,569 (722-30,946)	2,970 (142-14,165)	57,179 (2,200-168,461)
HBeAg (range) PEU/mL	29 (0.14 - 400)	N/A	791 (0.18 to >1400 (ULQ))

^a 37/47 patients with baseline RNA > 200; ^b 4/26 patients with RNA > 200 copies)

Interim Safety

Blinded, Pooled Safety – Summary: Well Tolerated with Favorable Safety Profile

Blinded Summary of TEAEs (Studies 201 and 202)

- No SAEs or treatment related discontinuations or interruptions
- Adverse events were mostly mild, infrequent, and considered unrelated to study drug
- No Flares on treatment
- No clinical AE > grade 2
- 3 patients with rash considered "possibly related" (2x grade 1, 1x grade 2); none associated with systemic findings
- Only 1 patient in each study has had a grade 2 AE considered possibly related to study drug
 - Macular/maculopapular rash-resolved on antihistamine, (Study 201)
 - ALT increase-resolved with continued treatment, (Study 202)

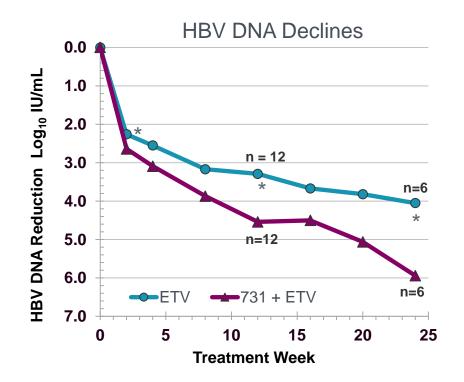
Blinded Pooled TEAE¹ Lab Abnormality \geq 2 Patients (N = 98) Study 201 (N = 73) Study 202 (N= 25) Grade 2 Grade 3 Grade 2 Grade 3 Lab Analyte Patients, n(%) Patients, n(%) Patients, n(%) Patients, n(%) ALT (SGPT) 3 (4%) $1^{2}(1\%)$ 4 (5%) AST (SGOT) 3 (4%) 4 (5%) ---Lipase 2 (3%) 1 (1%) ------ $1^{3}(1\%)$ Lymphocytes 1 (1%) ------Serum amylase 2 (3%) 3 (4%) ---Serum glucose 3 (4%) 1 (1%) -----Urine blood⁴ 4 (5%) --------

¹ Treatment Emergent AE

²G3 ALT at entry to study,

³ Transient, in context of and attributed to flu-like illness

⁴ Attributed to menses

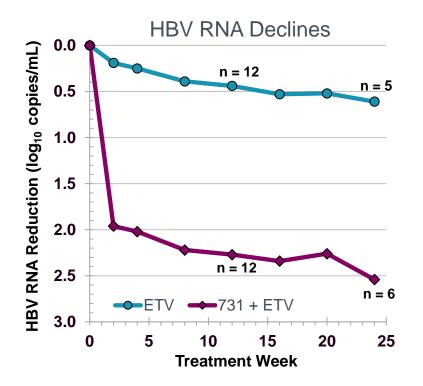

⁵~60% of lab abnormalities overall on ABI-H0731, proportional to randomization

Study 202 Interim Antiviral Efficacy

Highly Viremic Subjects

ILC: April 13, 2019

Study 202: Superior DNA Reductions with 731 Combination


Mean Log ₁₀ HBV DNA Decline			
Week	ETV	ETV + 731	P Value
12	3.29	4.54	<.011
24	3.99	5.94	<.005

HBV DNA assessed by Roche Cobas qPCR; LOQ = 20 IU

- Significantly faster and deeper reductions in HBV DNA levels, as early as Week 2 (P=.03)
- Among subjects with abnormal ALT at entry, more rapid ALT normalization seen in combination arm
 - 5/7 vs. 0/5 by Week 4 (P <.05)
 - 7/7 vs. 2/5 by Week 12 (P <.05)

*Statistically significant at (P < .05 or better)

Study 202: Superior RNA Reductions with 731 Combination

Mean Log ₁₀ HBV RNA Decline			
Week	ETV	731 + ETV	P Value
12	0.44	2.27	<.005
24	0.61	2.54	<.005

HBV RNA assessed by RT qPCR; LOQ = 200 copies/mL

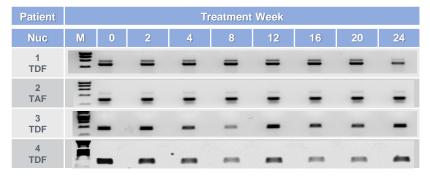
 All patients on combination achieved a rapid decline in RNA levels

Study 201 Interim Antiviral Efficacy

HBV DNA "Nuc Suppressed" Subjects

Elimination of Residual Viremia is an Important Unmet Medical Need

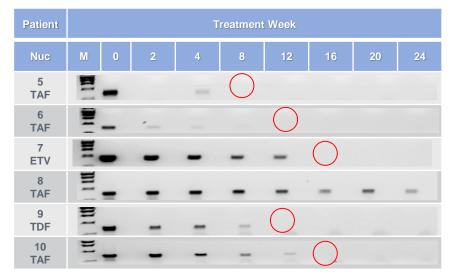
- Nucs do not eliminate HBV viremia even after years on treatment¹
- Detected DNA represents "infectious virus"
 - ILC2019, PS-150: "Evidence for the presence of infectious virus in the serum from chronic hepatitis B patients suppressed on nucleos(t)ide therapy with detectable but not quantifiable HBV DNA"
- A highly sensitive semi-quantitative PCR assay was developed at ASMB to detect viral DNA levels to 2-5 IU/mL to monitor loss of residual virus


Input IU/mL of WHO standard

Assay Standardization and Validation

Study 201: Elimination of Detectable Virus Only on Combination

At Week 24, longitudinal serum samples were assayed for detectable virus

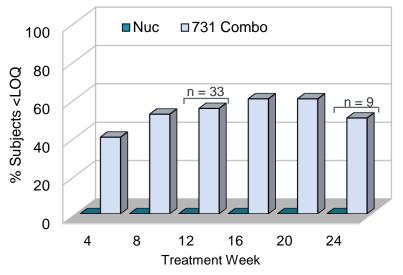


Nuc Monotherapy

HBV DNA PCR Assay To Quantitate Low Level Viremia

- DNA purified from longitudinal serum samples (0 24 Wk)
- PCR amplification (40-45 cycles) using individually optimized primers

Residual viremia not eliminated by Nuc



731 Combo Therapy

Residual viremia decline below detection (2-5 IU/mL)

Study 201: RNA Reductions to BLQ Only on Combination

HBeAg Positive Patients with RNA >LOQ at Baseline (N = 37)

Mean Log ₁₀ HBV RNA Decline			
Week	Nuc	731 + Nuc	P Value
12	0.05	2.34	<.001
24	0.15	2.20	.012

- All subjects on combination arm achieved rapid RNA declines
- Of subjects with detectable baseline RNA, 60% of 731 combo subjects achieved RNA <LOQ (200 copies/mL) by Week 16 vs. 0% on Nuc arm

Study 201: Antigen Declines at Interim Analysis

Patients Treated 24 Weeks*			
Treatment	Nuc	731 + Nuc	
DNA (TND ¹)	0/4 (0%)	5/6 (83%)	
RNA (<200 Copies/mL)	0/3 (0%) ²	3/6 (50%)	
$HBeAg \ge 0.5 Log_{10} Decline$	0/3 (0%)	1/6 (17%)	
HBsAg ≥ 0.5 Log ₁₀ Decline	0/4 (0%)	0/6 (0%)	
¹ Target not detected by ASMB semi-quantitative PC	R *Subj	*Subjects with available data	

¹ Target not detected by ASMB semi-quantitative PCI ² a 4th subject on Nuc was BLQ at baseline

- Antigen declines anticipated to follow elimination of residual viremia
- Study subjects continue to be treated and followed in open label Study 211
- Safety, viremia and viral antigens continue to be monitored over time

Summary of Interim Data for Phase 2a Studies on ABI-H0731

Favorable safety and tolerability profile

• AEs and lab abnormalities were generally considered unrelated, grade 1 and transient

Combination of 731+Nuc demonstrated superior antiviral activity vs. Nuc alone

- In treatment naïve patients, faster and deeper declines in HBV DNA observed starting at Week 2
- In Nuc "suppressed" patients, HBV DNA reductions to below limits of high-sensitivity PCR assay
- In both studies, significant HBV RNA declines

To prevent new cccDNA formation and increase cure rates, elimination of residual viremia will likely be required

• HBeAg and HBsAg decline are anticipated to follow elimination of viremia

Ongoing studies to define timelines to see cccDNA loss, sustained suppression & potential cure

Acknowledgements

• The Patients

• The (many) clinical study teams

Office of Xiaoli Ma Quest Clinical Research (GI) Research and Education Asia Pacific Liver Center Schiff Center for Liver Diseases Toronto General Hospital Queen Mary Hospital Southern California Research Center Thomas Jefferson University Hospital Toronto Liver Center Icahn School of Medicine at Mount Sinai Medical Associates Research Group

Assembly Biosciences

Christina Schmidt Linda Baher Shannon Kennedy Dongmei Qiang Eliza Christina Johns Hopkins University School of Medicine Stanford University Medical Center Infectious Disease Care King's College Hospital GI Research Institute NYU Langone Medical Center Digestive Disease Associates Offce of S Chan, MD Waikato Hospital, Pfleger Liver Institute at UCLA Cedars-Sinai Medical Center Auckland Clinical Studies

Thank You!