Pre-Clinical Profiling of a Novel Class of Orally Bioavailable Small Molecules Potently Inhibiting Hepatitis B and D Virus Entry

assemblybio

Marc P Windisch,* Nuruddin Unchwaniwala,* Jinghu Carl Li, Heidi Contreras, Dinara Azimova, Francielle Tramontini Gomes de Sousa, Joseph Tan, Kirsten Stray, Peter Haggie, Michael Shen, Jiaxin Yu, Michel Perron, Michael A Walker, William E Delaney, Min Zhong

Assembly Biosciences, Inc., South San Francisco, CA, USA

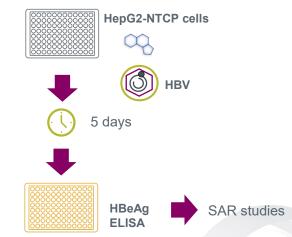
Presented at the 2023 International HBV meeting, September 19–23, 2023, Kobe, Japan (Session IV: Drug discovery in pre-clinical models [September 20, 2023])

©2023 ASSEMBLY BIOSCIENCES, INC.

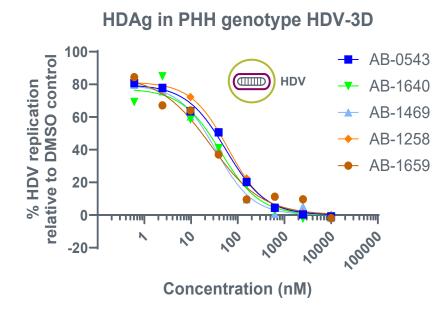
Presenter Disclosures

• Marc P Windisch is an employee and stockholder of Assembly Biosciences, Inc.

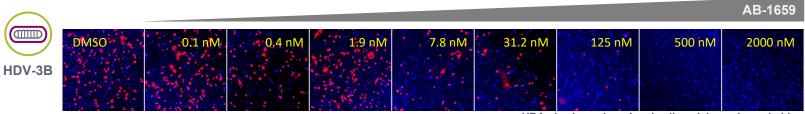
There is a Need for Orally-Bioavailable HDV Drugs


- HDV is a satellite virus that requires the HBV envelope to infect hepatocytes ^{1,2}
 - approx. 12 million chronically infected patients, worldwide ³

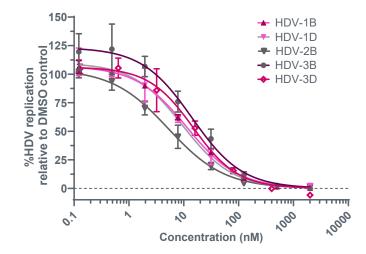
- HDV infection is the most severe form of viral hepatitis.
 - incidence rates of HCC are higher in HDV-positive vs negative individuals ⁴
- Limited treatment options for HDV
 - \succ IFNα → weekly injections ⁵
 - ➢ Bulevirtide (BLV), only approved drug (EMA) ^{6,7}
 → daily injections


Screening for HBV/HDV entry inhibitors targeting NTCP

HBV infection assay

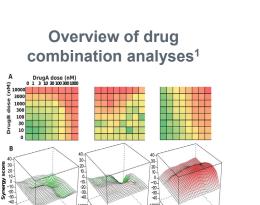


Small-Molecule Entry Inhibitors Efficiently Block HDV Infection in PHHs

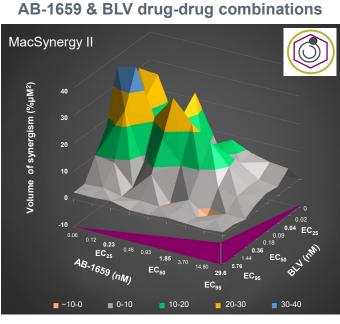


	Compound	HDV EC ₅₀ (nM) genotype 3D <i>HDAg</i> in-cell ELISA
	AB-0543	62
	AB-1640	45
	AB-1469	45
	AB-1258	45
	AB-1659	29

AB-1659 Potently Inhibits Multiple HDV Genotypes Enveloped With HBV Genotype B or D in HepG2-NTCP Cells


HDAg is shown in red and cell nuclei are shown in blue

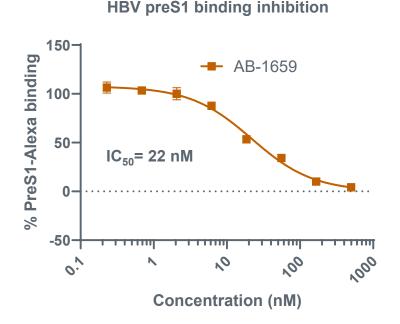
HDV/HBV genotypes	HDV EC ₅₀ (nM) HDAg
1B	11
1D	10
2B	5
3B	14
3D	15


Proof-of-Concept Study: AB-1659 Has Synergistic Antiviral Activity in Combination With BLV in HBV-Infected HepG2-NTCP Cells

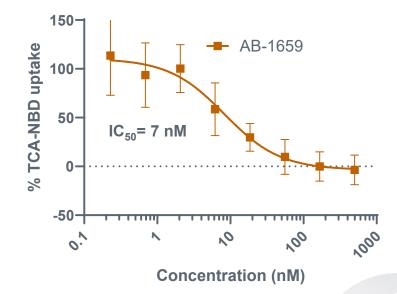
Three-dimensional model of analyzing

10000

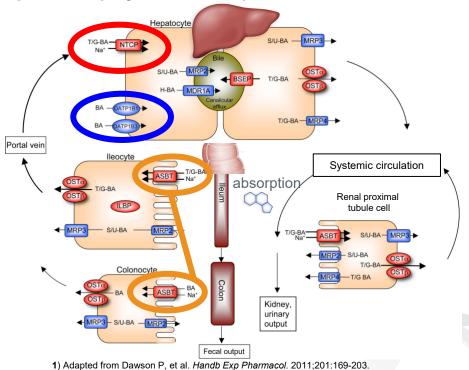
synergistic


Volume of synergism=590 Volume of antagonism=-2.8

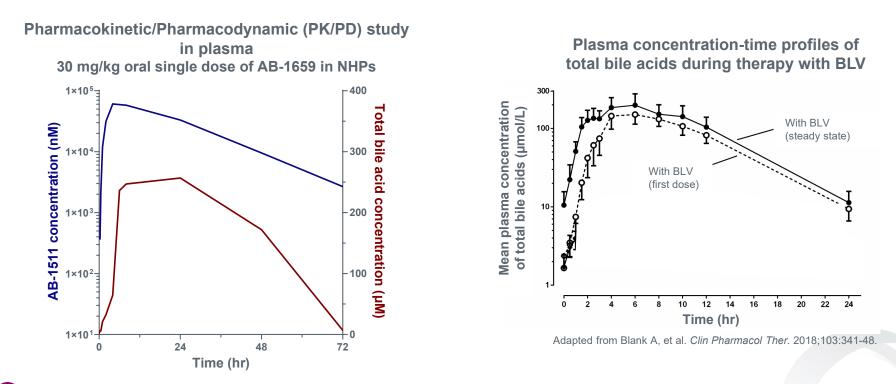
Volume of synergism (%µM²)	Log volume	Interpretation
<25	<2	Insignificant
25-50	2-5	Minor synergism
50-100	5-9	Moderate synergism
100-1000	>9	Strong synergism


Antagonistic

Additive


AB-1659 Inhibits HBV PreS1 Binding and NTCP-Dependent Bile Acid Uptake in HEK293 Cells Demonstrating That NTCP is The Target

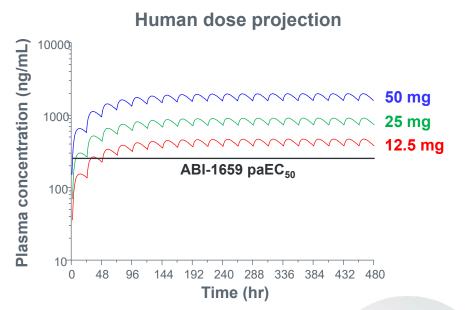
Bile acid (BA) uptake inhibition


AB-1659 Is a Selective NTCP Inhibitor

Complex interplay of BA transporter for BA homeostasis¹

Transporter selectivity			
(expressed as IC ₅₀ BA transporter / IC ₅₀ NTCP)			
NTCP	0.007 μM		
OATP1B1	342		
OATP1B3	41		
ASBT	219		
BSEP	5205		
OATP1A2	2740		

AB-1659 Has a Favorable PK Profile and Leads to Transient Total Bile Acid Elevations Demonstrating Target Engagement in NHPs



AB-1659 Has a Favorable ADME Profile That Is Consistent With Once-Daily Treatment

AB-1659 ADME profile

Properties	
t _{1/2} , hr	36
Bioavailability (F%)	99
hERG inhibition (10 µM)	1.2%
Liver microsome (LM) human/NHP/rat/mouse % remaining at 45 min	94 / 100 / 100 / 82
Ames test	negative
Protein-adjusted (pa)HDV EC_{50}	~500 nM

hERG, human ether-a-go-go-related gene

Conclusions

- A novel class of highly-potent, orally-bioavailable HBV/HDV entry inhibitors was identified with favorable drug-like properties
- AB-1659 was selected for further characterization and demonstrated:
 - Potent activity against multiple HBV and HDV genotypes
 - Synergistic antiviral activity when combined with BLV
 - Selective inhibition of NTCP vs other human bile acid transporters
 - A favorable PK/PD profile in non-human primates
 - Projected human dose of ≤50 mg orally once daily
- We anticipate nominating a development candidate from this program in 2023

Acknowledgments

- All members at Assembly Biosciences contributing to the HDV project
- Writing and editorial support were provided by Gregory Suess, PhD, CMPP, of AlphaBioCom, a Red Nucleus company, and were funded by Assembly Biosciences, Inc.
- This study was sponsored by Assembly Biosciences, Inc.