

Assembly Biosciences, Inc. Corporate Presentation

January 2018 Nasdaq: ASMB

Cautionary Note Regarding Forward-looking Statements

The information in this presentation contains estimates and other forward-looking statements regarding future events, including statements about the clinical and therapeutic potential of our HBV-Cure and Microbiome programs, our ability to receive payments from Allergan Pharmaceuticals International Limited ("Allergan") under the collaboration agreement, timing of the initiation of and availability of data from our ongoing and planned clinical trials in each of these programs, plans, strategies, milestones, and intentions related to our programs. Certain forward looking statements may be identified by reference to a future period or periods or by use of forward-looking terminology such as "believe," "predictive", "planned," "should," "initiate," "potential," "anticipated," or "expected." Such forward-looking statements, which we intend to be covered by the safe harbor provisions contained in Section 27A of the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as amended, are just predictions and are subject to risks and uncertainties that could cause the actual events or results to differ materially. These risks and uncertainties include, among others: the components, timing, patient enrolment rates, cost and results of clinical trials and other development activities involving our product candidates (including those licensed by Allergan); the unpredictability of the nonclinical and clinical development of our product candidates and of the duration and results of regulatory review of those candidates by the FDA and foreign regulatory authorities; our anticipated capital expenditures, our estimates regarding our capital requirements, and our need for future capital; and the possible impairment of, or inability to obtain, intellectual property rights and the costs of obtaining such rights from third parties. These and other potential risks and uncertainties that could cause actual results to differ from the results predicted are more fully detailed under the heading "Risk Factors" in our Annual Report on Form 10-K for the year ended December 31, 2016 and our Quarterly Report on Form 10-Q for the guarter ended September 30, 2017 each filed with the Securities and Exchange Commission (the "SEC"). It is not possible for Assembly management to predict all risks nor can Assembly assess the impact of all factors on its business or the extent to which any factor, or combination of factors, may cause actual results to differ materially from those contained in any forward-looking statements Assembly may make. This presentation also contains estimates and other statistical data made by independent parties and by us relating to market size. These estimates involve a number of assumptions and limitations, and you are cautioned not to give undue weight to such estimates. In light of these risks, uncertainties and assumptions, the forward-looking events and circumstances discussed in this presentation may not occur and actual results could differ materially and adversely from those anticipated. Except as required by law, we assume no obligation to update publicly any forward-looking statements, whether as a result of new information, future events or otherwise.

Assembly Biosciences: Two Innovative Drug Development Platforms

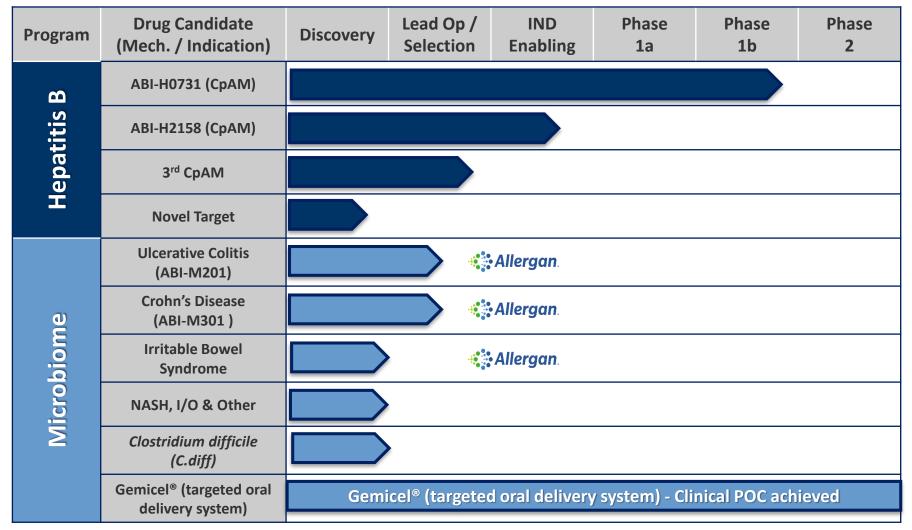
Challenge

Opportunity

Rationale

HBV

- SOC does NOT CURE
- Eliminate cccDNA (moiety responsible for viral persistence)
- Establish Core protein
 Allosteric Modifiers
 (CpAMs) as critical
 component of HBV curative
 backbone
- Prevent replenishment of new cccDNA until established cccDNA is eliminated

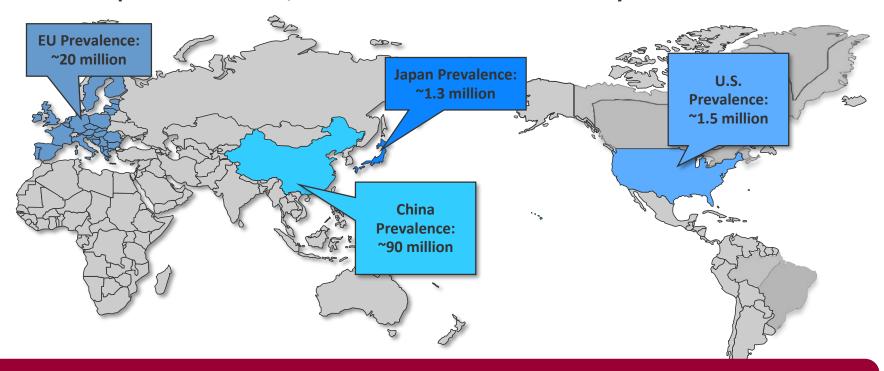

Microbiome

 FMT is inadequate as therapy

- Develop oral, synthetic, live biotherapeutics
- FMT provides clinical POC and basis for strain selection

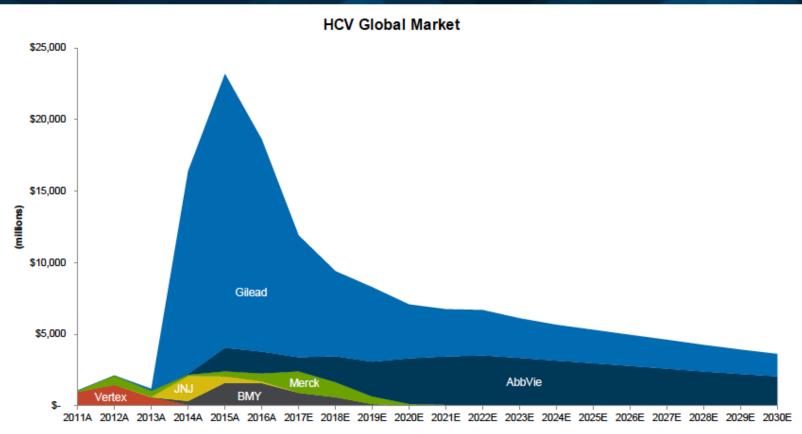
Development Programs in Large Markets with High Unmet Need

Hepatitis B: Cure Program


HBV is Curable with a Large Treatment Population

CpAMs: ASMB's Portfolio

Over 250 Million Chronically-Infected HBV Patients Globally


- Low cure rates with current SOC
- Vaccines prevent infection, but do not cure those chronically infected

Chronic HBV infection results in chronic inflammation and progressive liver damage, potentially leading to liver cirrhosis, HCC and ~ 1 million deaths/year

Opportunity to Learn From HCV-Cure Market

Sources: Company reports and William Blair estimates

Globally, HBV has >100M more patients than HCV, with an opportunity to achieve a more growth oriented sales curve while treating many more patients per year

Source: William Blair Analyst Report

Cure is Possible: But not with SOC Alone

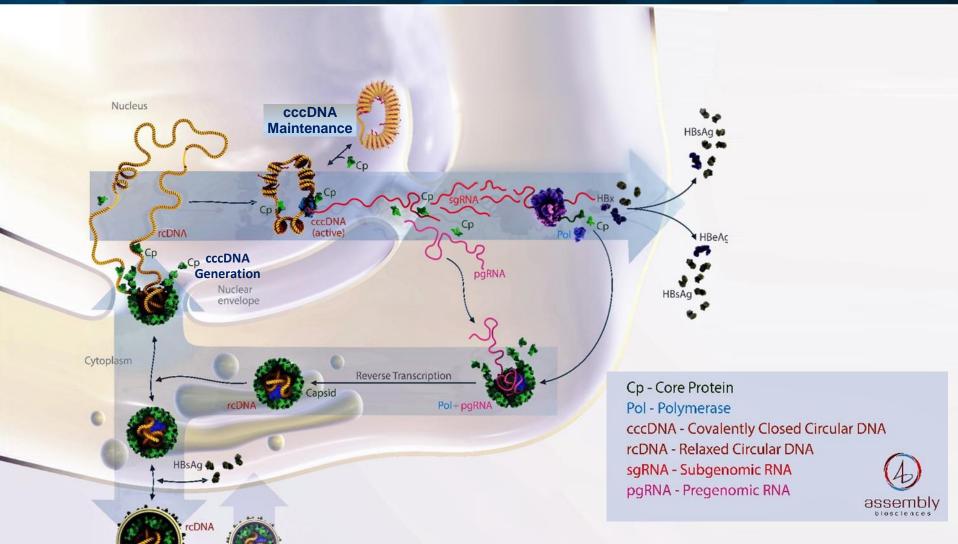
Currently Approved

- Nucleos(t)ide Analogs: entecavir, tenofovir, lamivudine, telbivudine, adefovir and tenofovir alafenamides
- Interferons (IFN and peg-IFN)

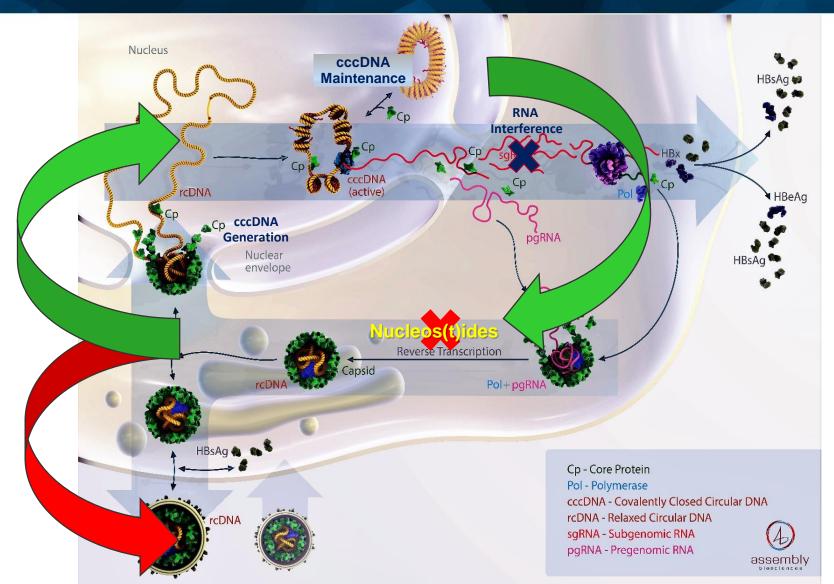
Entecavir and Tenofovir (Standard of Care)

- Safe, highly effective therapies and the current drugs of choice
- Target the viral polymerase, inhibiting reverse transcription to generate rcDNA
- Highly effective at eliminating and sustaining undetectable HBV DNA levels
- One pill, once-a-day dosing, very well tolerated, no meaningful resistance emergence

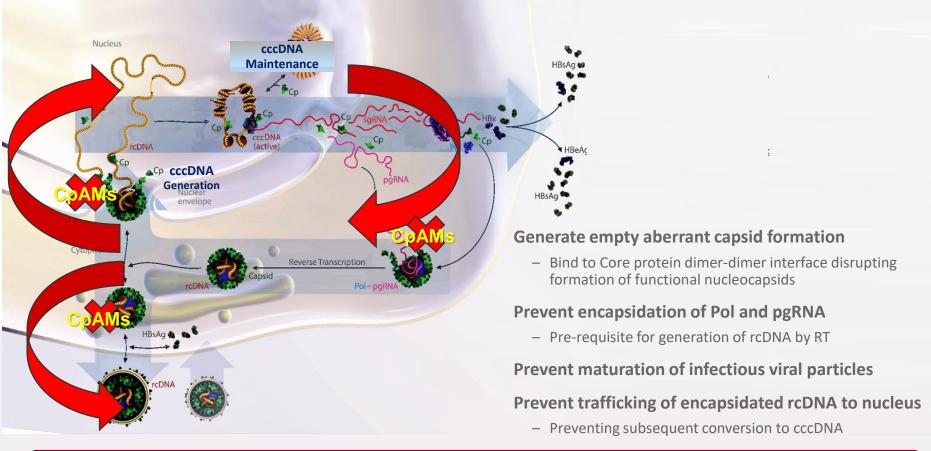
Unfortunately, cure rates are very low despite prolonged therapy


Cure is Possible!

- Current spontaneous and treatment-related cure do occur in ~5% of HBV patients (sustained viral suppression in absence of therapy)¹
- Chronically-infected woodchucks cured with ETV (viral DNA undetectable, cccDNA levels reduced >4 logs, HBsAg levels reduced 91% and HCC emergence prevented)²

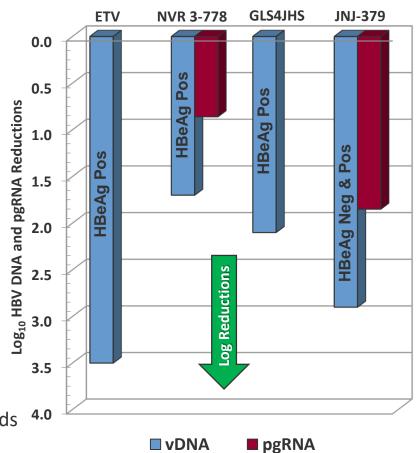

HBV Life Cycle: A Complex DNA Virus with Limited Targets

Nucs Fail to Inhibit cccDNA Establishment



CpAMs Inhibit Several Steps of HBV Life Cycle

CpAMs target core protein and inhibit key steps required for cccDNA generation


Core protein Allosteric Modifiers (CpAMs) target and inhibit cccDNA generation

Clinical POC of CpAMs as Potent HBV Antivirals

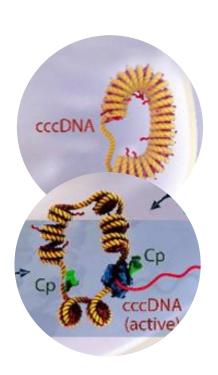
Phase 1b 28-Day monotherapy studies in HBV-infected patients

- Viral DNA reductions serve as surrogate marker for effective liver concentrations in patients
- Establish safety profile in patients
- Studied CpAMs
 - NVR 3-778¹ 600 mg BID
 - → 1.72 log drop in HBeAg pos patients
 - GLS4JHS² 240 mg QD + RTV
 - → 2.13 log drop in HBeAg pos patients
 - JNJ-379³ 25 mg QD
 - → 2.16 log drop in combined HBeAg pos & neg
 - JNJ-379³ 75 mg QD
 - → 2.89 log drop in mostly HBeAg neg patients
- All HBV antivirals have reduced observed activity in HBeAg pos patients due to significantly higher viral loads

¹ Yuen et al., AASLD Poster LB-10 11-2015

² Ding et al., AASLD Poster 920 10-2017

³ Zoulim et al., AASLD Poster LB-15 10-2017


Half-life of Existing cccDNA May be Shorter than Previously Believed

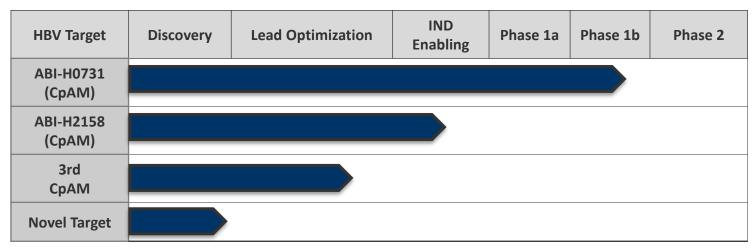
New studies show half-life of cccDNA may be on order of weeks-to-months

All biological molecules have a half-life, including cccDNA

- Longitudinal study conducted on samples (serum and biopsies) from patients with emerging resistance to LVD and TBV
- Appearance and enrichment of resistant mutations used as a genetic marker in monitoring populations of viral DNA, pgRNA and cccDNA
- Population sequences from viral DNA, pgRNA and cccDNA are similar, indicating that resistant variants result from turnover of nearly all of the pgRNA and cccDNA populations
- Serum HBV DNA and pgRNA populations can revert to or from Nuc^R populations in as few as 12 weeks
- Existing cccDNA may decay faster than previously predicted

Therapies inhibiting establishment of new cccDNA, while existing cccDNA pools decay over time, should <u>lead to a higher overall cure rates</u>

Hepatitis B: Cure Program


HBV is Curable with a Large Treatment Population

CpAMs: ASMB's Portfolio

ASMB Portfolio of HBV Antivirals

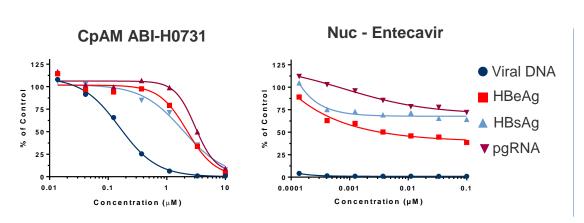
Novel molecules, with distinct IP discovered at Assembly

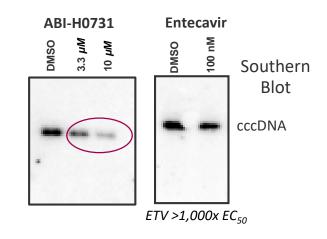
- Optimized CpAMs that exhibit potent inhibitory activity against cccDNA generation and establishment in HBV infected cells
- Observed to be **metabolically stable** in liver hepatocytes, enabling potent and sustained inhibition
- PK profiles predictive of once a day dosing, limited potential for drug-drug interactions
- Clinical candidates have exhibited good safety profile in animal studies, supporting prolonged dosing in patients

CpAMs designed to be potent with once a day dosing

ABI-H0731: Candidate Summary

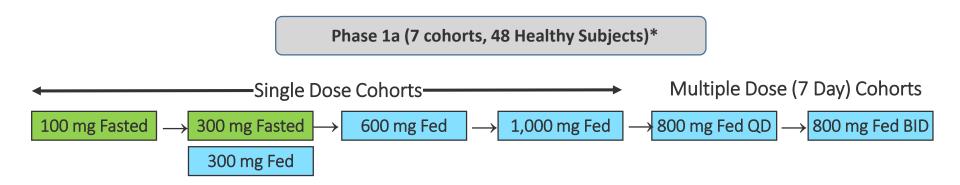
Lead molecule from a deep pipeline of CpAMs




- Phase 1b ongoing
- Phase 1a Complete: Dose ranging study was well tolerated in all cohorts
 - Favorable PK profile with a half-life (~24 hr) predictive of QD dosing
 - Well absorbed and associated with plasma concentrations that we believe will be sufficient to suppress viral replication and cccDNA generation
 - No SAEs, no clinically significant AEs and no withdrawals due to AEs in Phase 1a study
- Potent and selective activity against all major HBV genotypes

ABI-H0731 Inhibits cccDNA Establishment in PHH

Assays in HBV Infected Primary Human Hepatocytes (PHH)


Compound	Viral DNA	HBeAg	HBsAg	pgRNA
ABI-H0731	154	2,210	3,000	1,840
ETV	<0.1	Incomplete	Incomplete	Incomplete

Observations

- ABI-H0731 reduced viral HBV DNA levels in addition to known surrogate markers for cccDNA (HBeAg, HBsAg and pgRNA)
- ETV was highly effective at inhibiting HBV DNA levels, but exhibited modest effects on inhibition of cccDNA establishment

ABI-H0731 - Phase 1a Trial Design

Primary Objective – Dose-related safety and tolerability

- No treatment-emergent laboratory abnormalities deemed clinically significant were observed
- Most treatment-emergent adverse events occurred as single events with possible exception of Grade 1 rashes in highest dosed cohorts

Secondary Objective – Human PK

- Low subject-to-subject variability
- Administration with food resulted in a ~45% increase in AUC
- Half-life ~24 hours → potential for once daily dosing

ABI-H0731 - Phase 1b Trial Design

Phase 1b – Dose-ranging, HBeAg negative & HBeAg positive patients

28 Day Patient Cohorts

 $X \text{ mg Fed QD} \longrightarrow Y \text{ mg Fed QD}$ Z mg Fed QD

- Primary Objective
 - Dose-related safety and tolerability in HBV patients
- Secondary Objective
 - Selection of optimum dose
 - Relative degree of declines in viral load and pgRNA
- Study is ongoing and remains blinded

Topline Phase 1b data expected Q1 2018

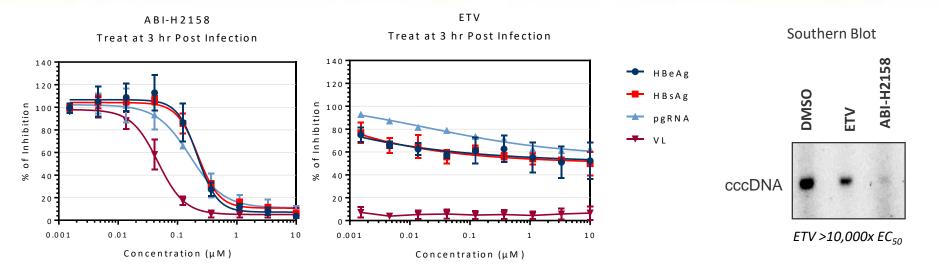
ABI-H0731: Clinical Investigational Plan

Study	Duration	# treated	Endpoint(s)
Phase 1a	1 or 7 days	48 Subjects	Safety and PK (completed)
Phase 1b Monotherapy (nuc naïve pts)	28 days	≤ 50 Patients	Safety and declines in viral load and pgRNA (ongoing)
Phase 2a Combination POC Study	6 -12 months	≤ 100 Patients	Safety in combination with Nuc and declines in pgRNA and viral antigens
Phase 2b Combination Curative Study	12-18 months	TBD	% patients with sustained response

Potential for initial POC data in H2 2018

ABI-H2158: Candidate Summary

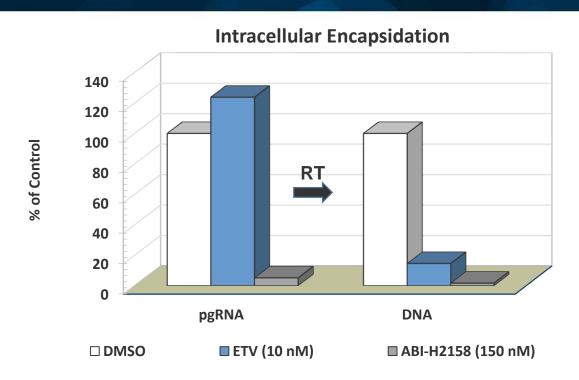
Potent candidate from a deep pipeline of CpAMs



- Distinct and proprietary chemical scaffold
 - All ASMB CpAMs are differentiated from each other and from other classes (i.e. HAPs)
 - Unique patent estate for each ASMB CpAM (applications)
- Enhanced potency in reducing viral DNA levels in in vitro studies
 - Potential to "melt" capsids trafficking to nucleus
- Precise potency needed to fully shut down cccDNA generation in HBV patients remains unknown
- Maintains favorable drug-like characteristics, with potential for QD dosing

Second generation CpAM to initiate clinical trials in 2018

ABI-H2158 Inhibition in HBV Infected PHH Cells


Doromotor	PHH EC ₅₀ (nM) (Treatment 3 hr Post Infection)			
Parameter	ETV	ABI-H2158	ABI-Nx	
Viral DNA	< 0.025	49	11	
HBeAg	>10,000	242	60	
HBsAg	>10,000	231	50	
pgRNA	>10,000	193	72	

Observations

- ABI-H2158 inhibits viral replication in HBV-infected PHH cells, indicating good stability in human hepatocytes
- Next generation CpAMs exhibit enhanced potency in reducing HBeAg, HBsAg and pgRNA levels, as well as blocking cccDNA establishment

CpAMs Block pgRNA Encapsidation

- Induced HepAD38 cells were treated at 10x EC₅₀ levels
- CpAMs prevent encapsidation of pgRNA and subsequent Pol synthesis of rcDNA in nucleocapsids
- ETV inhibited conversion of pgRNA to rcDNA in nucleocapsids, stabilizing and increasing the levels of encapsidated pgRNA observed

ASMB CpAM Program Summary

- ✓ CpAMs disrupt viral replication at multiple steps
- ✓ Importantly, CpAMs *block the generation of new cccDNA* molecules (SOC/Nuc's do not effect cccDNA)
- ✓ Multiple distinct and proprietary chemical scaffolds
- ✓ ASMB CpAMs exhibit a balance of potency AND favorable drug-like properties
- ✓ ABI-H0731
 - Favorable safety and PK properties predictive of QD dosing in patients
 - Ongoing Phase 1b study in chronically-infected patients

√ ABI-H2158

- Second generation candidate exhibited enhanced potency while retaining favorable drug-like properties in in vitro studies
- Clinical trials expected to initiate in 2018
- ✓ 3rd CpAM to be nominated for potential development

Combination of a Nuc + CpAM has the potential to show strong antiviral activity, have a high resistance barrier, decrease cccDNA levels and most importantly, has potential to improve CURE RATES

Microbiome Program

The Microbiome: Realizing the Promise

Modulating the gut microbiome has the potential to revolutionize the management of a broad range of therapy areas

Infectious diseases

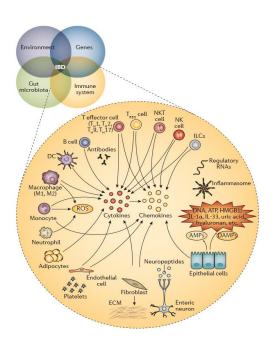
GI disorders

Oncology

Metabolic diseases

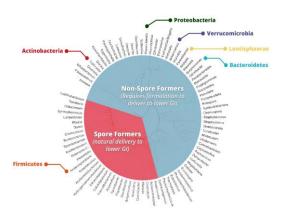
Neurosciences/CNS

POC data in fecal microbiota transplants (FMT) have shown restoration of a dysbiotic microbiome to health


But, FMT is inadequate as a therapy: lack of consistency, not scalable, not controlled, unreliable, poor route of administration safety risk

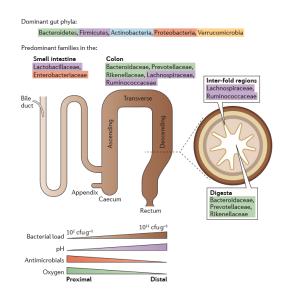
The Microbiome: Challenges

Strain selection


Mechanisms of disease pathology must be considered in context with environment, genome and microbiota

Manufacturing

Lack of consistency, not scalable, not controlled, unreliable, poor route of administration


Diversity is needed for optimal microbiotic therapeutics

Targeted delivery

Unique microhabitats require targeted delivery

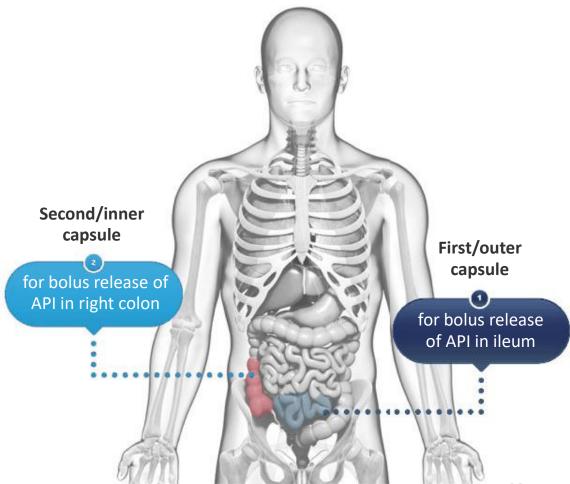
- pH
- Oxygen
- Antimicrobials
- Nutrients

ASMB Solution: Proprietary Microbiome Platform

Our differentiated and fully-integrated platform to deliver synthetic live biotherapeutics (LBT)

Strain	cGMP	Targeted Drug	Rapid Clinical
Selection	Manufacturing	Delivery	Development
Proprietary & scientifically rigorous, rational strain selection methodologies, including: • Human FMT studies • Sequencing and analysis protocols • Pathology-driven mechanisms • In vitro and in vivo models	Differentiated Manufacturing Approach Isolation Development of appropriate culture media & cultivation conditions GMP cell banking of pure strains and bulk drug substance	Gemicel® delivery technology • Designed to enable targeted delivery to specific regions of the colon • Designed to deliver select strains of vegetative bacteria • Spores • Non-spores	Commensal organisms viewed as safe • Potentially shortens time to clinical trials • Robust CMC data

GEMICEL®: ASMB's proprietary targeted delivery technology


The colon is an attractive site for drug delivery, particularly for microbiotic therapies if they

can be delivered reliably.

GEMICEL® Capsule

 Manufacturing designed to be amenable to biologic products

Allergan/Assembly Microbiome Collaboration

Collaboration Summary

- Expedites our efforts into multiple GI indications
- Leverages our end-to-end microbiome technology platform
- Advances our ability to move microbiome candidates rapidly into clinical development with strategic partners
- Aligns with our strategic goals for the company
 - Leverages both our Microbiome and HBV programs long term financially, commercially, and globally

Key Disclosed Terms

Rights for GI development programs

- ABI-M201 for Ulcerative Colitis (UC)
- ABI-M301 for Crohn's Disease (CD)
- 2 compounds targeting Irritable Bowel Syndrome (IBS)
- ASMB has limited option to co-promote in US and China

Financial Highlights

• \$50M upfront payment

Milestones & Royalties

- Up to ~\$630M in development milestones
- Up to ~\$2.15B in commercial milestones
- Tiered royalties up to mid-teens on net sales

Development Funding

- \$75M R&D funding through POC (shared 2/3 by AGN, 1/3 by ASMB)
- AGN assumes all post-POC development costs

We intend to continue identifying appropriate development and commercial partners to rapidly advance our Microbiome program into other indications

Such as liver disease/NASH, immuno-oncology, metabolic diseases, *C.diff*, CNS, etc.

Microbiome Platform

Capturing the potential of the human microbiome for development of novel therapeutics

Drug Candidate (Mech. / Indication)	Discovery	Lead Op / Selection	IND Enabling	Phase 1
Ulcerative Colitis ABI-M201				: Allergan
Crohn's Disease ABI-M301			•	: Allergan
Irritable Bowel Syndrome				: Allergan
NASH				4
Immuno-oncology				4
Clostridium difficile (C.diff)				
Gemicel® (targeted oral delivery system) Clinical POC achieved				

Leveraging our Microbiome Platform to Expand to Other High-rationale Indications in Metabolic Diseases and Central Nervous System diseases

Company Summary

ASMB 2018 Milestones & Financial Summary

2017		2018 Upcoming Milestones	
✓	Up to \$2.8B microbiome collaboration for GI		Q1 2018: 3rd CpAM candidate selection
	indications		Q1 2018: ABI-H0731 Phase 1b data (topline
√	Initiated ABI-H0731 Ph 1b portion of trial		interim)
✓	AASLD: 3 Posters:		H1 2018: ABI-H0731 Phase 1b data (full)
	✓ ABI-H0731 Ph 1a safety and PK profile		H1 2018: ABI-H0731 initiate Phase 2a trial
	✓ Next generation CpAM profiles		H2 2018: Initial POC HBV clinical data expected
	✓ cccDNA half-life study		H2 2018: Initiate clinical study of next-gen CpAM
✓	ABI-H2158 selected as 2 nd CpAM clinical candidate		2018: Select next indications (non-GI) in microbiome
			2018: Advancements with collaboration partners in microbiome

Nasdaq	Cash, cash equivalents & marketable securities	Shares outstanding	Fully diluted
ASMB	~\$132M as of November 6, 2017*	~20.1M**	~25M

Assembly Biosciences: Summary

Clinical stage company focused on two key innovative areas of drug development

HBV

ASMB believes CpAMs will be the backbone drug class for increasing cure rates

ASMB has a robust and proprietary pipeline of CpAMs

Microbiome

Delivering oral, synthetic live biotherapeutics to targeted location

Allergan partnership for GI assets, rest of pipeline wholly owned

Team

Industry leaders w/ expertise in drug discovery → drug development

Thank You